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Abstract

A procedure based on the Radon transform and elements of distribution theory is developed to obtain fundamental
thermoelastic three-dimensional (3D) solutions for thermal and/or mechanical point sources moving steadily over the
surface of a half space. A concentrated heat flux is taken as the thermal source, whereas the mechanical source consists
of normal and tangential concentrated loads. It is assumed that the sources move with a constant velocity along a fixed
direction. The solutions obtained are exact within the bounds of Biot’s coupled thermo-elastodynamic theory, and
results for surface displacements are obtained over the entire speed range (i.e. for sub-Rayleigh, super-Rayleigh/sub-
sonic, transonic and supersonic source speeds). This problem has relevance to situations in Contact Mechanics,
Tribology and Dynamic Fracture, and is especially related to the well-known heat checking problem (thermo-me-
chanical cracking in an unflawed half-space material from high-speed asperity excitations). Our solution technique fully
exploits as auxiliary solutions the ones for the corresponding plane-strain and anti-plane shear problems by reducing
the original 3D problem to two separate 2D problems. These problems are uncoupled from each other, with the first
problem being thermoelastic and the second one pure elastic. In particular, the auxiliary plane-strain problem is
completely analogous to the original problem, not only with regard to the field equations but also with regard to the
boundary conditions. This makes the technique employed here more advantageous than other techniques, which re-
quire the prior determination of a fictitious auxiliary plane-strain problem through solving an integral equation.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The rapid motion of a point mechanical and/or thermal load over the surface of a half space is a problem
that has relevance to situations in Contact Mechanics, Tribology and Dynamic Fracture. Typical cases of
application are the following: (i) Motion of an asperity developed on the mating surface of mechanical
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systems that are pressed against each other and undergo relative sliding rapid motion accompanied by dry
friction. Such an asperity may be a material inclusion or some thermo-mechanical deformation of the
mating surface (see e.g. Ju and Huang, 1982; Barber, 1984; Kennedy, 1984; Huang and Ju, 1985; Barber
and Ciavarella, 2000). (ii) Brake systems (see e.g. Ling and Ng, 1962; Huang and Ju, 1985; Barber and
Ciavarella, 2000). (iii) Crack face contact in intersonic interfacial rapid fracture of bimaterial plates (see e.g.
Rosakis et al., 1998; Huang et al., 1998). (iv) Deformations generated by the motion of high-speed modern
trains (Lefeuvemesgouez et al., 2000; Krylov et al., 2000). In the foregoing situations, the moving me-
chanical/thermal load may produce severe deformation and temperature rises in a thin zone near the
contact zone, and therefore may cause excessive wear and even cracking near this zone.

In many cases, the problem described above can be modeled as a steady-state situation involving a half
space under mechanical/thermal loads, which move over the surface of a half space at a constant velocity.
In addition, the solution of the problem with concentrated loads may serve as a Green’s function for solving,
through integral equations, more general contact problems (see, e.g., for 2D elastodynamic and thermo-
elastodynamic contact problems the works by Georgiadis and Barber, 1993, and Brock and Georgiadis,
2000). Here, the 3D problem of moving mechanical/thermal point sources is examined within the coupled
thermo-elastodynamic theory of Biot (1956). Additional aspects of this theory and solutions to specific
problems were presented by, among others, Chadwick (1960), Carlson (1972), Dassios and Grillakis (1984),
Massalas et al. (1985), Atkinson and Craster (1992), Brock (1995, 1997), Brock and Georgiadis (1997,
1999), and Georgiadis et al., 1998, 1999).

Existing analyses of thermoelastic problems dealing with moving mechanical/thermal loads over the
surface of a half space may be categorized according to the form of the governing equations employed, i.e.
one may distinguish treatments which employ uncoupled or coupled thermoelasticity and also treatments
which exclude or include inertial (dynamic) effects. For instance, the approaches of Ling and Mow (1965);
Jahanshahi (1966); Mow and Cheng (1967); Kilaparti and Burton (1978); Barber (1984), and Bryant (1988)
use uncoupled thermoelasticity and exclude inertial effects, whereas the analyses of Ju and Huang (1982),
and Huang and Ju (1985) employ uncoupled thermoelasticity but include inertial effects. On the contrary,
Brock and Georgiadis (1997, 1999) provide more complete exact solutions that include both thermal-
coupling and inertial effects. In addition, the work of Brock et al. (1997) considers transient effects and
makes comparisons with the steady-state results of Brock and Georgiadis (1997) revealing that the steady-
state assumption is indeed satisfactory far away from the point of the first application of the loading, along
the half-space surface.

The problem considered here is the 3D analogue of the plane-strain problem considered by Brock and
Georgiadis (1997) and it is based on coupled thermo-elastodynamics too. A related study is that of Brock
and Rodgers (1997) which, however, was restricted to consider only a normal moving load (the cases of a
tangential load and a heat source were not considered) and a sub-Rayleigh load speed. In the present study,
we follow a different method than the Laplace transform (double and two-sided) method of Brock and
Rodgers (1997) and, more importantly, we obtain results over the entire speed range (i.e. for sub-Rayleigh,
super-Rayleigh/subsonic, transonic and supersonic speeds of the loads) and for all cases of loading (i.c.
normal, tangential and thermal loads). Notice also that, with the exception of the work of Brock and
Rodgers (1997), all studies in the literature do not consider the 3D case.

In the absence of thermal effects, the present case reduces to the classical 3D steady-state elastodynamic
problem of moving point loads along the surface of a half space. This problem was considered by, among
others, Eason (1965); Lansing (1966); Barber (1996), and Georgiadis and Lykotrafitis (2001). Since the
‘pure mechanical’ problem may serve as a guide for the more difficult thermo-mechanical problem con-
sidered here, it is interesting to briefly discuss the solution procedures in these studies. Eason (1965) and
Lansing (1966) employed double Fourier transforms but, especially when the load speed lies in the super-
Rayleigh regime, the double Fourier (or, equivalently, the double two-sided Laplace) transform technique
becomes particularly involved.
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In our opinion, the approaches of Barber (1996) and Georgiadis and Lykotrafitis (2001) are much
simpler than the approaches of Eason (1965) and Lansing (1966). Also, the technique of Georgiadis and
Lykotrafitis (2001) fully exploits the existing solution of the corresponding plane-strain problem by treating
the latter problem as an auxiliary one. In particular, Georgiadis and Lykotrafitis (2001) developed a
technique based on the Radon transform (see e.g. Gel’fand et al., 1966), certain coordinate transformations
and distribution theory to reduce the original 3D problem to two auxiliary problems, which are 2D and
uncoupled (one problem is of the plane-strain type and the other of the anti-plane shear type). These
corresponding problems are completely analogous to the original 3D problem, not only with regard to the
field equations but also with regard to the boundary conditions. On the other hand, Barber (1996) pre-
sented a superposition technique of the Smirnov—-Sobolev type (see e.g. Sveklo, 1964; Poruchikov, 1993) for
the specific case of a normal load. This reduces the original 3D problem to an auxiliary 2D problem. The
auxiliary plane-strain problem now is not completely analogous to the original 3D problem and its de-
termination can only be achieved through the solution of an integral equation. In general also, the solution
to such an auxiliary problem probably cannot be readily available in the literature since the problem is
somewhat artificial, as relative experience indicates (see e.g. Poruchikov, 1993). In view of the above, it
seems that the Radon-transform technique (which is not based on explicit superposition-type arguments) is
more direct than the Smirnov—-Sobolev technique. In addition, Georgiadis and Lykotrafitis (2001) provided
a complete solution to the ‘pure mechanical’ 3D problem, filling therefore a gap in the literature related to
this problem, in the sense that they obtained results over the entire speed range (i.e. for sub-Rayleigh, super-
Rayleigh/subsonic, transonic and supersonic speeds of the loads) and for both normal and tangential loads.

Here, in considering the 3D problem of moving mechanical/heat point sources, the Radon-transform
approach is followed by fully taking advantage of existing solutions of the corresponding 2D problems. The
two auxiliary problems involving half-plane domains and surface loadings are again uncoupled; the first is
the thermo-elastodynamic plane-strain problem of moving mechanical/thermal line sources (Brock and
Georgiadis, 1997) and the second is the ‘pure mechanical’ anti-plane shear problem of a moving line load
(Georgiadis and Lykotrafitis, 2001). After establishing the correspondence principle connecting the 3D
problem with the auxiliary ones, the solution to the original problem follows by performing first a coor-
dinate transformation and then taking the inverse Radon transform of the 2D solutions. In the course of
the inversions, extensive use of distribution theory is made concerning mainly treatment of products of
distributions.

Another comment pertains to the applicability of the Radon-transform approach described above on
non-axisymmetric situations. In general, the method still works in the case that the loading is not axially
symmetric but the 2D auxiliary problems are no longer direct analogues of the original 3D problem. The
method is particularly simple when there is no angular dependence in the boundary conditions (as is the
case here) regardless of possible loss of axisymmetry due to the material response (anisotropy) and/or
the generation of Mach waves in the medium (this asymmetry is induced by changes in the nature of
governing PDEs of steady-state dynamical problems—the changes being manifested by the existence of
different velocity regimes).

Finally, we should also mention that interesting applications of the Radon transform in elasticity
problems were presented earlier by Willis (1970, 1973), and more recently by, among others, Wang and
Achenbach (1996) and Shmegera (2000).

2. Problem statement
Consider a thermally conducting linearly elastic isotropic body in the form of a 3D half space x; > 0.

This otherwise unloaded body is initially at rest and at a uniform temperature 7; (expressed in K), but at
time ¢ = 0 is disturbed by the motion of a mechanical/thermal source (see Fig. 1). The concentrated point
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Fig. 1. Thermal and mechanical sources moving under constant velocity ¥ over the surface of an elastic half space. O'x;x,x; is a fixed
Cartesian coordinate system and Ox)z is a moving Cartesian coordinate system attached to the loads.

load has components P and S (these loads are in the directions x; and x|, respectively), whereas the point
heat source has intensity KQ, with K denoting the thermal conductivity expressed in (power) (length)™!
(K)~! and Q being a multiplier expressed in (length) (K). The mechanical/thermal source moves under a
constant velocity 7 over the surface x3 = 0 and along the x,-direction. Notice that a tangential load in the
direction orthogonal to the direction of motion (i.e. along the x,-direction) is not considered because this
case is rather impractical. Indeed, it is difficult for one to apply and maintain a moving tangential load
having a direction that is orthogonal to the direction of motion. This case, however, was considered in
Georgiadis and Lykotrafitis (2001) for the sake of completeness.

Then, the governing equations of the problem according to the linear coupled thermo-clastodynamic
theory (Biot, 1956; Chadwick, 1960; Carlson, 1972) will be written. With respect to a fixed Cartesian co-
ordinate system O'x; (j = 1, 2, 3), the equations of motion (thermoelastic Navier—Cauchy equations) and the
generalized heat-conduction equation, in the absence of body forces and sources, along with the stress—
strain relations (Duhamel-Neumann law) are as follows:

62
pVu+ (2 + V(Y - u) —K0(3)L+2,u)v0:pa—:, (1a)
00 , oV -
KV207pCvaf;co(3A+2,u)To%:0, (1b)
6 = u(Vu+uV) + AV -u)l — ro(31+2p)01, (1c)

where u is the displacement vector with components u;, T is the current temperature, 0 = T — T is the
change in temperature, ¢ is the stress tensor with components o;; (i, j = 1,2, 3), 1 is the identity tensor, V is
the 3D gradient operator, V -u is the dilatation, V? is the Laplacian operator, (A, ) are the Lamé con-
stants, p is the mass density, k is the coefficient of thermal expansion, and C, is the specific heat at constant
deformation. It is also noticed that the third term in the LHS of Eqgs. (1a) and (1b) arises from the in-
teraction of the deformation field with the thermal field. In this process, however, shear (rotational) waves
remain unaffected by the ability of the medium to conduct heat; only longitudinal (dilatational) waves are
modified by thermal straining and, conversely, only mechanical energy expended in volume changes is
converted into heat.

We now introduce the standard stzeady-state assumption (see e.g. Fung, 1965; Georgiadis, 1986; Barber,
1996; Brock and Rodgers, 1997) according to which a steady stress and displacement field is created in the
medium w.r.t. an observer situated in a frame of reference attached to the moving load, if this source has
been moving steadily for a sufficiently long time. In this way, any transients can reasonably be avoided
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(therefore gaining considerable simplification in the analysis) and, moreover, upon introduction of the
Galilean transformation

x:xl_Vta Yy =X, zZ = X3, (2)

the boundary conditions become independent of ¢ and the variables (x;,?) enter the problem only in the
combination (x; — V). Furthermore, in the new moving Cartesian coordinate system Ox)z, partial deri-
vatives w.r.t. ¢ are neglected and (l1a) and (1b) can be written as

62
Vu + (m? — 1)V(V - u) + £V0 — mzcza—xlzl =0, (3a)
K_, mc 00 o(V -u)
v+, wnyen —0, 3b
1 \Y% + C Vf . KilogCclhL o ( )

where m = (J_/Vz) > 1 with 11 = [(A+ 2u)/p)"* being the longitudinal (L) wave speed in the absence of
thermal effects and V4 = (u/p)"/? being the transverse (T) or shear wave speed, ¢ = M, = V/V; and
me = My = V/Vy are the two Mach numbers, k = (4 — 3m?) < 0, the displacement vector has the com-
ponents (uy, u,,u.), the stress tensor has the components (0., 0, 0=, .. .),

B aux auy aMz
Vo= (ax)+<ay)+(az>’

o2 o? o?

2 — _ _
V= <a> - (ayz) " <a>

It is emphasized that 77 above is not the longitudinal-wave speed in coupled thermoelasticity but serves in
our formulation for a convenient normalization of the field equations.
Finally, the boundary conditions of the problem take the form (see Fig. 1)

and

0 (r,3,2 = 0) = —P3(x)3(»), (4a)
O'zx(xayaz = O) = _Sé(x)é(y)’ (4b)
0, (x,y,2=10)=0, (4c)
L2220~ 95)50), (4a)

which hold for —oco < x < 400 and —oo < y < 400. In the above equations, J6( ) is the Dirac delta dis-
tribution. The objective of the present work is to determine the displacement field for the problem described
by Egs. (I¢), (3) and (4).

3. Basic Radon-transform analysis

The solution of the problem described in Section 2 will be obtained through a technique based on the
Radon transform (see e.g. Gel'fand et al., 1966; Ludwig, 1966; Deans, 1983), certain coordinate trans-
formations and elements of distribution theory. This procedure reduces first the original 3D problem to a
pair of corresponding auxiliary problems, i.e. a 2D plane-strain problem and a 2D anti-plane shear
problem. Then, the solution to the original problem follows simply by performing first a coordinate
transformation and then taking the inverse Radon transform of the known 2D solutions. Since, in general,



904 G. Lykotrafitis, H.G. Georgiadis | International Journal of Solids and Structures 40 (2003) 899-940

2D problems are easier than their 3D counterparts, solutions to the auxiliary problems can be already
available in many cases and this is an advantage of the technique.
The 2D Radon transform of a function f(r), with [r| = (x2 +)?)"/?, is defined as

W) =fla.0) = [ [10-8g-nndr= [ fxnas

= /HO /Hcf(x,y)é(q —xcosw — ysinw) dxdy, (5)

where L denotes all straight lines in the plane Oxy (see Fig. 2), and ds is the infinitesimal length along such a
line. The lines L are defined by n-r =g, with n = (n,,n,) = (cos w,sin®), and the Radon transform is
in fact the integral of f(r) over all these straight lines in the plane. The Radon-transform properties of
linearity, derivative transformation and transformation of the product of Dirac delta distributions will be
used here. These properties are as follows:

R(CLA (1) + Cofa0) = Cifs (4, 0) + Cofslg, ), (6)
of\ _ fl(q0)

s;z(ﬁn, 22), (7)
Pf N\ Pflg,o) ) o (g, 0)

Hamm) g SO )

R(G) - 50) = 8(g). 9)

where (C|, C,) are constants, (j, k) take the values 1 and 2, (x; = x,x, = y), and V? now is the 2D Laplace
operator (i.e. V2 = (8?/dx?) + (8%/dy?)).
The inverse 2D Radon transform is given by

B L™ 0f(q,0) 1
Py =100 = =55 | (/m z 'PF(q_rcos@_(p))dq)d”’ (10)

where the symbol PF( ) stands for the principal-value pseudo-function (or distribution) (see e.g. Roos,
1969; Kanwal, 1998). In other words, the symbol PF( ) means that the inner integral is interpreted in the
Cauchy principal-value sense due to a pole of the function ( ). Equivalently, this distribution can be defined
as (PF(1/x), ¢) = lim,_, flx\ - [#(x)/x] dx, where (,) denotes the inner product of distributions, ¢ is a test

g\s/ 'y r,9)

Fig. 2. Geometry for the 2D Radon transform of functions in the xy-plane. The symbol L denotes all straight lines in the plane.
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function and 7 is a positive number such that t — 0. In the analysis below, the case of more than one
singularities in the same integrand (i.e. the case of product of distributions) frequently appears and,

therefore, the latter notation proves to be convenient.

Next, the two auxiliary problems will be obtained as transformed problems of the original problem.
Operating with the Radon transform (5) to Eqgs. (3) and (4), and using the properties (6)—(9) provides the

following set of transformed field equations and boundary conditions

GETN N RN 1) o (, o o Qi) 0 %, 0
0q> 02 " i Oq " Oq oy 0q Oz K Oq " o2
i, | T + (m* = )n O, G, O Ok 0 _ m*c? ity _ 0
g = oz Yog\ "0 70 0 Y g o2
N B 2 A P S
o o 2\ g "™ T d oz TS T

0z2

20 20 ) ~ - ~
I_< a_2+ﬁ +Cvmcx@—KTochLE nx%+n.%+auz =
1\ 9q q q q

622(q7wvz =0 _Pé(q)v

) —=
&zx(Q7wvz = 0) = 7S5(‘1)7
) =

6-zy(qa w,z = 0 07

00(q,w,z=0

% — —06(q),
zZ

(11a)

(11b)

(11¢)

(11d)

(12a)
(12b)

(12¢)

(12d)

where ¢, = cn,. Now, as Fig. 3 depicts, we perform a rotation of the original (x,y,z) coordinate system
through an angle w about the z-axis. In the new (g, s,z) coordinate system, Eqs. (11)—(12) are expressed as

du, 4, o (oa, @) o0 02 Olly 0.
0q 0Oz Oq * 0¢?

K [%0 %0 .00 o (o, i
< + )-‘-Cvmc —q—KT()CXVL—q<ﬁ+ " > :O,

u \ 0¢*> 072 Vr O 0g\ 0q Oz
Qu,  0%u
2 2 S s
(1 —m’c2) o + = =0,

622(q7w72 = O) = _Pé(q)7

6-4(q,w,z =0) = =S coswd(q),

(13a)

(13b)



906 G. Lykotrafitis, H.G. Georgiadis | International Journal of Solids and Structures 40 (2003) 899-940

\4

V cosw

y

Fig. 3. Initial xy-system and rotated gs-system.

09(q,w,z=0
Pa22=0 _ _gs(g) (15¢)
z
0.5(q, 0,z =0) = Ssinwd(q), (16)
where

u, 1 0 0 i,
i, | =0 cosw sinw u, |, (17a)
U 0 —sinw cosw i,
G 1 0 0 ..
64| =[0 cosw sinw G |. (17b)
O 0 —sinw cosw sy

Finally, as expected by the linearity of the operations involved, one may corroborate that the rotated
Radon-transformed stresses and displacement gradients are related in exactly the same manner as in the
physical (non-transformed) plane of the 2D plane-strain and anti-plane shear states. Indeed, it can be
shown, by virtue of (1c), (7) and (17), that the following relations hold

_ , Ou, 0, ~

6., = (A4 2u) % —i-/la—i—,urcﬂ, (18a)
- Ou. Ou,

qu,“(anraZ)a (18b)
~ Ol

O-ZS - l'[ aZ ) (19)

which certainly obey the transformed Duhamel-Neumann law 6 = u(Va + aV) + A(V - @)1 + ux6, where
and ¢ have the components (., iy, ;) and (6., G-, 0, . . .), respectively.

Now, one may observe that Egs. (13), (15) and (18) form a 2D plane-strain problem in the (g,z) coor-
dinate system. As Fig. 4a depicts, this problem (the first auxiliary problem) involves a linearly elastic and
thermally conducting body in the form of the half plane z > 0 that is disturbed by the steady-state motion
of a concentrated line mechanical/thermal loading. The mechanical load has components P and Scos w,
whereas the heat source has intensity KQ. The concentrated loads move along the g-axis with velocity
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Vcoso

Veoso
—

-S sin®

(0)

(@) (b)

Fig. 4. First (a) and second (b) auxiliary problems in the gz-plane.

V, = V cosw. On the other hand, Eqs. (14), (16) and (19) form a 2D anti-plane shear problem in the (s, z)
coordinate system. As Fig. 4b now depicts, this problem (the second auxiliary problem) involves a linearly
elastic body in the form of the half plane z > 0 that is disturbed by the steady-state motion of a concen-
trated anti-plane line load. In this case, the problem is ‘pure mechanical’ and the only load S sin @ moves
along the g-axis again with velocity ¥, = V' cos w.

4. Results for the first auxiliary problem

In this section, the solution of the first auxiliary problem (2D plane-strain thermo-elastodynamic
problem) is recorded. This solution was obtained by Brock and Georgiadis (1997) through two-sided
Laplace transforms and exact inversions. Functions in the physical plane of the auxiliary problem are, of
course, transformed functions in the Radon-transform plane of the original 3D problem. In using these
results, one should be careful in properly interpreting the 2D solution in the rotated coordinate system so as
the physics of the solution in the new system to be retained. More details on this are given in the end of the
present section.

By invoking superposition, the total normal displacement at the surface, in the entire speed range, is
written as

ii:(q, 0,z =0) = 1" (q,0,2 = 0) + il (q, 0,z = 0) + #l? (g, 0,z = 0), (20)

where (@), 45, 49) are, respectively, the normal displacement due to a normal load P, tangential load
Scosw and thermal load KQ. The individual terms at the surface are given by the expressions

(P)

P F (M 2

" (g,0,2=0) = m F](P> (Mrcos w, &) In(|g]) — 2——5——"— ( Tzcos ©.¢) sgn(sgn(cos w)Q)] ) (21)

S EY (M :

ﬁg‘g) (q7 0,z = 0) _ Cos wSin(COS (}J) Fvl(S) (MT cos w, 8) ln(‘qD _ wsgn(sgn(cos w)q) ,

(22)
h F(Q) M
79 (q, 0,z = 0) = Q"(lsL(‘;’/sz‘”) F9 (M cos w, &) In|g| — WSgn(sgn(cos w)q) |,
+ &

(23)
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where sgn( ) is the signum function, &= (Ty/C,)(xVr/m)> is the dimensionless coupling constant,
h = KVr/umC, is the thermoelastic characteristic length, and

Mi(1 ;Rfi/[fg)l/z = FD(My,e), V< TIh

R (M) = § MR - M- M) =FY (Mr,e), r<V<W 24

K,

0=FD(Mr,e), M. <V
0=FED(Mr,e), V<

P00 < aM3(1 —M%E(M% -7 = F (M), Vo<V < 05)
MEF}?(MM), o <V
0= FY (M, ¢), V<Wh

Fl(S)(MT;S) _ _2M%(2 —M3)(1 —n[]:[fg)l/z(M% — 1)1/2 — FS)(MLS), Ve <V < Vi, (26)
0= FY) (M, e), g M. <V
(2 _M%) — 2(1 _RME£)1/2(1 _M%)l/z = FVZ(iS‘)(MT,?% V < VT

Fz(S)(MT, £) = (2—M2) + 8(2— ME)(M3—1) _ Fz(f)(MT,e), <V < W, (27)
Q=M +2M - D POR -0 poe o g oy

W.

0= F2 (My,e), V<

F9(My,e) = CAML(2 - M7)(1 ;Ig/ffg)l/z(M% - ' = FO(Mye), Vi<V < W (28)
0=F2 (M, e), 8 V. <V
CoMOM: - (20, V< hy

FO My, ) = (2_MK%)3ML =FO(Mye), Vi<V <V, (29)
(2 — My)My, A;/f)MLH = F2<3Q) (Mr,¢), V<V

The above functions depend upon the ‘shear’ (or ‘transverse’) Mach number Mt and the coupling constant
&. The orders of magnitude of the coupling constant and the thermoelastic length for usual conducting
materials (e.g. aluminum, copper, lead, titanium and steel) are ¢ = O(1072) and 2 = O(107'°)m. In Eqgs. (24)-
(29), the following definitions are employed. First, it is noticed that the quantity V1, = V.(1 + 8)1/ ? represents
the steady-state velocity of thermoelastic longitudinal waves (Chadwick, 1960; Brock and Georgiadis, 1997)
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and, accordingly, the ‘thermoelastic longitudinal’ Mach number M, =V /Vi, = My /(1 + ¢)"? is defined.
Then, the steady-state thermoelastic Rayleigh function (Brock and Georgiadis, 1997)

R, = R,(Mr, &) = (2 — M2)* —4(1 — M?)"*(1 — M2)'? (30)

defines the steady-state thermoelastic Rayleigh-wave speed V. as the non-trivial real root of the equation
R, =0, and

W, = W(Mr,e) = (2= M7)" +4(M7, — 1) (M7 = 1), (31)

K. = K.(Mr,6) = (2~ M2 — 1601 — M?)(1 - M3), (32)

are functions that are related to the Rayleigh function. In particular, K, results as a product by the mul-
tiplication of complex conjugates involving the Rayleigh function, at a certain step of the solution pro-
cedure of the plane-strain problem. Appendix A of the present work provides a brief analysis concerning
the zeroes of K,. One of those zeroes coincides with the non-trivial zero of the Rayleigh function R, defining
therefore the thermoelastic Rayleigh-wave velocity. We should mention that the results of Appendix A were
obtained in the spirit of the analysis by Rahman and Barber (1995) on the ‘pure elastic’ steady-state
Rayleigh function.

It is also noticed that the Mach numbers My, and Mt are related, by their definition, through the fol-
lowing equation

1
MLE:_MT7 (33)
with
e (201 =v)(1+¢)\"?
= = ———= 1 4
m=ge= (ET2E) s, (34)

where v is the Poisson ratio of the material. The last expression may take the form m, = [2(1 —v,)/
(1 — 2v,)]"/? if the new material constant v, is introduced as
v+e(l—v)

Vp=——"—"—". 35

ST+ 2¢(1 ) (35)
Further, it can be shown that ¢/(1 + 2¢) < v, < 1/2. Finally, we notice that ¢ is also used as a subscript to
emphatically denote that a certain quantity or function depends on thermal effects through the coupling
constant.

In the same manner now, one may write by superposition the total rangential displacement at the surface.

In this case, however, we consider only the subsonic problem (¥ < Vr), in order to avoid the presentation of
complicated results, and write

iiy(q, 0,2 = 0) = i) (q, 0,z = 0) + i) (¢, 0,z = 0) + ¥ (g, w,2 = 0), (36)

where (@), 4%, u(?)) are the individual tangential displacements due to a normal load P, tangential load
Scosw and thermal load KQ, respectively. These displacements are given at the surface by the expressions

. Psgn(cosw

i (q,0,2=0) = —%G(m (M7 cos w, ¢)sgn(sgn(cos w)q), (37)
_(s) _0 _Scost(S) 1 18
u, (C],CU,Z— ) - (MTCOS(,U,&) n(|q|)7 ( )

u
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Oxkh
(1 —1-8)1/2

where the functions of (Mr, ¢) that enter the solution are defined as follows:

19 (g, 0,z = 0) = G'9 (Mr cos w, €) In(|q]),

(2-M3)-2(1-M)"*(1 - M}

G (Mr,e) = — n . V<,
M3(1— M)
G<S>(MT,8) :%, V< I,
My, (1 — M2)Y?
G<Q)(MT,8):—M V< V.

nR, ’

Finally, the total temperature change due to mechanical loads is written by superposition as

é(qa w,z=0)= éu))(qv w,z=0)+ é(S)(q’ w,z =0),

(39)

(43)

where (0, 0) are the change in temperature due to, respectively, a normal load P and a tangential load

Scosw. These terms at the surface and for the entire velocity range have the following form

(44)

~ Pe
*) — o= P) ILny: 5
0" (q, 0,z =0) (149 {Ll (Mt cos w, 8>PF<qsgn(cos a))> + Ly (Mrcosw,s) (q)] ,
~ S cos wsgn(cos w)e
® =0) = LY (m JPF( ———— | + LY (M )0
0% (q,w,z =10) (1 2) [ > (Mr cosw, €) gsan(cos @) + Ly (Mrcos w,)0(q) |,

where the functions of (Mt, &) now are expressed as follows:

0=L"(Mr,e), V<
AM2(2 — M2Y(1 — M2 (2 — 1)V?
L§P>(MTa8) — _ T( T)( — Ls) ( T ) ELS)(MT,8>7 VF <V< VL.':’
0= LYY (M, ), M. <V
M2(2 — M?
%EL(T)(MTJ), V<V
M2(2 — M2)?
LgP)(MT,S) = %EL(ZPQ(MT;{;); VT < vV < VLx’
M2(2 — M?
MEL(};)(MT,S), Vi, <V
VVS 3
DME(1 - M) s
_%EL(M)(MDS)» V<t
(8) N 1/2
Ly (M) = 8ME(M2 — 1)(1 — M2)" L (Mre). V<V <V
TCKE = Ly T,¢) T Le
OEng)(MT78), Ne<V

(48)
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-V
v =,

1
Kall?//Z///// ) KB‘”//ZH///

() (b)

Fig. 5. Schematics for the first auxiliary problem and behavior of the function sgn(sgn(cos w)g) in the cases @ = 0 (a) and w = = (b).

0= L (M, s),2 s V<
IMFQ2 - M) Mz = 1) )
L (Mr5) = { ~ K, =Ln(Mre), V<V < (49)
MEME - 1)
- = o), <V

This concludes the presentation of the results for the first auxiliary problem. As mentioned at the be-
ginning of this section, we shall provide now an explanation of the way the results of the ‘physical’ plane-
strain problem in the form obtained by Brock and Georgiadis (1997) have been transferred here and
recorded in the form given above. First, consider the function sgn(x) appearing in particular terms of the
solution to the ‘physical’ problem. In order to preserve this behavior in the auxiliary problem, we should
have a Radon transformed solution containing the function sgn(g) when w € [0,7/2) U (37/2,2n] (this is
because the projection, ¥, = V' cosw, of the velocity 7 on the g-axis has a positive direction) and the
function sgn(—¢) when o € (n/2,3n/2) (because now the projection has a negative direction). In a compact
form, the Radon transformed solution (i.e. the solution to the first auxiliary problem) that corresponds to
the behavior sgn(x) in the ‘physical’ plane-strain solution is written as sgn(sgn(cos w)q). Accordingly, Fig.
5a and b depicts the first auxiliary problem and the behavior of the function sgn(sgn(cos w)q) for the special
cases w = 0 and w = 7, respectively. Next, by the same token, one may find that the function 1/x appearing
in the solution to the ‘physical’ problem corresponds to the function 1/(sgn(cos w)g)) in the solution to the
transformed problem. On the contrary, the other functions In |¢| and 6(¢g) do not pose any difficulty because
they are even. Finally, one should take into account the possible influence of the rotation of the coordinate
system upon the direction of the displacements. For instance, the load S in the solution 'S of the ‘physical’
problem should be taken as the expression S cos wsgn(cos w) when the auxiliary problem is considered and
not as the projection S, = Scos w.

5. Solution of the second auxiliary problem

The solution to the second auxiliary problem, i.e. the surface displacement in the elastic half plane
z > 0 due to a moving anti-plane shear load, is given by Georgiadis and Lykotrafitis (2001). This solution
was obtained by the use of two-sided Laplace transforms and exact inversions. In the anti-plane shear
case, only two speed ranges exist (i.e. the subsonic range |V cos w| < V¢ and the supersonic |V cos w| > Fr
range of the load motion w.r.t. the velocity Vr). In the entire regime, the solution is given in a compact
form as
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S sin w

i (g, 0,2 =0) = o [Q1(Mr cos ) In(|q) + Ox(Mr cos w)H(—sgn(cos @)q)], (50)
where H( ) is the Heaviside step function, and
.0) = | s = O V< (51)
0= Q0pn(Mr), V> rr
OEQZII(MT), V<V
O>(Mr) = _W =0n(My), V>V (52)

Notice in (50) and for the supersonic case that the argument ¢ of the step function is multiplied by
sgn(cos w) in order for the surface disturbances to be always behind the source and not ahead, as the ve-
locity component ¥, changes sign in the course of the Radon-transform inversion. Moreover, in utilizing
the physical solution in the transformed plane, one should take into account that the direction of the
displacement i, does not depend upon the direction of the motion of the load but does depend upon the
direction of the projection of the shear load S; = —Ssin w.

It is noticed finally that in the case of a vanishing tangential loading in the original 3D problem, i.e. when
(P#£0, §=0, Q+#0), the solution to the second auxiliary problem is #(g,w,z=0)=0 since
6.(q,w,z = 0) = 0 is obviously the proper boundary condition.

6. Inversion procedure and results for the actual problem
Obtaining the 3D solution from the transformed solution given before is accomplished in two steps.

First, the inversion of the coordinate transformation in (17) is performed providing the set (i, iy, #,) in
terms of the rotated Radon-transformed displacements (i, i, i), i.e.

i 1 0 0 i
i, | =10 cosw —sinw i, |. (53)
i, 0 sinw cosw i

Then, the Radon-transform inversion according to (10) gives the set (u.,u,,u,) in the physical domain.
Finally, from the latter solution, one can calculate the displacements in a system of cylindrical polar co-
ordinates (7, ¢,z) by using the coordinate transformation (see Fig. 6)

u, 1 O 0 U,
u. | =10 cose sing Uy (54)
U 0 —sing cos¢ u,

and also evaluate the stresses through (1c).

By using superposition and in order to avoid the presentation of lengthy results and expressions, the
displacements due to the loads (P, S, Q) will be considered separately. Also, numerical results will be pre-
sented in Section 9.

6.1. Normal displacement u{") due to the normal load P

In this case, the rotation of the original coordinate system (x,y,z) does not affect the transformed
component i, as is seen from (17a), and therefore the second auxiliary problem does not enter the solution
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Fig. 6. System of cylindrical polar coordinates (r, ¢, z) and corresponding displacement components.

at all. Accordingly, operating with the inverse Radon transform in Eq. (10) on (21) and using the following
relations from the theory of distributions (see e.g. Roos, 1969; Kanwal, 1998)

asgn(SgIgEICOS )q) = 2sgn(cos w)d(q), (55)
oln(lq|) _ !
- () )

one obtains

P

T o O T
i A )

(57)
At this point, we emphasize that any rigid-body displacement terms, which could be added in the RHS of
(21), have been eliminated by differentiation in the course of inverting the Radon transform. Further, the
evaluation of the inner integrals in (57) is accomplished by utilizing additional results from the theory of
distributions (Lauwerier, 1963) that concern the Hilbert transform of generalized functions, i.e.

I (3t -t

(58)
+00 1 1
—— )o(q)dg = —PF| ——— |. 59
/m PF(([-FCOS(O)-(?)) (@)dq (VCOS(w—cD)> %)
Using now the above results in (57) gives
P 2n P
uip)(r, 0,z=0)=—— { / {Fl( >(MT cos m, &)d(rcos(w — (p))} dw
4p 0
2n 1
(P) - 60
+/0 {sgn(cos w)Fy" (Mr cos w’S)PF(ﬂ:zrcos(w — (P))] dw}. (60)

Further, the following two properties of the Dirac delta distribution are employed: (i) the sifting property,
and (ii) the property that
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dlg() =Y ‘5|f(—‘)|>

where g({) is a monotonic real function of { which vanishes at the points { = a;, with (j = 1,2,...,N), and
g'(a;) are the derivatives at the pomts { =a; (see e.g. Roos, 1969; Kanwal, 1998). Cons1der1ng these
properties leads to the value (2/r) P)(My sin @) for the first integral in (60). Also, the second integral is
transformed through sectionally monotomc changes of variable as { = sin w. In view of the above, Eq. (60)
takes the form

P 1 _p : coso [ [ 211/2 1
0. =0) = = f SR sing.) + 52| [ a1 = )P oppr( s )t |
()

The above result is the basic result for the case of a moving normal load. From the expression in (61),

particular results will be obtained below for the entire speed range, i.e. for 0 < V < Vi, Vo, <V < V7,
I < V < M. and Vi, < V. The particular results depend of course upon the forms of the functions F, *® >( )

and F ( ) in each speed range. It is noticed finally that (61) shows that the surface normal dlsplacement
uP) is symmetric w.r.t. the x-axis of motion, and this concurs with the physics of the problem.

e Sub-Rayleigh range (0 < V < V4,):
Here, only the first term in the RHS of (61) contributes, since Fz(P) (Mr(1 — %) e) =0 for all £ € [0, 1].
Thus, the final result is

P .
u§P>(r, p,z=0)=— —2# Fl(f)(MT sin @, ¢), (62)
r

where the function FI(ID)( ) is given in (24). One may observe that (62) implies the symmetry of u{”) w.r.t.
both axes x and y.

e Super-Rayleigh subsonic range (Vz, < V < W7):

The solution is still given by the first term in the RHS of (61). However, as the analysis in Appendix A
indicates, the thermoelastic Rayleigh function vanishes (i.e. R,(M7 sin ¢, ¢) = 0) along the lines defined by
@ = L@, and ¢ = 7 £ @,, on the half-space surface, where ¢,, = sin’l(m}f/MT) and 0 < @, < /2 with
my, being the non-trivial zero of R,(Mr, ¢) given by (A.2) of Appendix A in terms of the Poisson’s ratio and
the coupling constant of the material. Therefore, the normal displacement ") is singular along these lines.
This means that solution (61) in its present form predicts two Mach-like Rayleigh wave sectors; one ahead
of the moving source and the other behind (see Fig. 7 showing the top view of the problem). Nevertheless,
as the pertinent radiation condition requires (see e.g. Fung, 1965), only trailing waves of this type should
exist. This statement is also supported by the observation of Barber (1996), in dealing with the respective
‘pure mechanical’ problem, that the steady-state problem should be viewed as the long-time limit of a
transient problem, in which the point load (that moves with a super-Rayleigh velocity) is suddenly applied
to an initially quiescent half space, and therefore, one should expect in such a problem the existence of
Rayleigh-wave disturbances behind but not ahead of the load.

In view of the above, we write the corrected solution in this speed range by also taking into account the
following three points: (i) The final solution should retain an »~! dependence. This was indicated by Willis
(1966), in general 3D problem with concentrated loads, who observed that equilibrium demands that the
stress field must vary as 2 from the point of application of the force, and therefore, that the displacement
field must vary as »~!. (ii) The expression given by the first term of (61) exhibits symmetry both w.r.t. the
axes x and y, whereas the final solution should retain symmetry only w.r.t. the x-axis. (iii) The correction
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RS

Fig. 7. Mach-like Rayleigh wave ‘sectors’. Only the trailing Rayleigh wavefronts (continuous lines) are acceptable in view of the ra-
diation condition.

added should eliminate the thermoelastic Rayleigh-wave disturbance ahead of the load. Therefore, the final
solution is written as

Pl . Q Q
uP(r 9,z =0) = —— 7Fl(lp>(MT sin @, ¢) + — -
> - rsin(@ — @g,)  rsin( + @g,)

2u
where Q is a yet unknown constant. Following the relative procedure by Barber (1996), this constant can be
determined as follows.
First, we notice from Egs. (24), (30) and (32) in the main text and Eq. (A.1) in Appendix A that the
function F{’(Mr, ) can be written as

(63)

(1—M2)"7[(2 — M3) +4(1 — M2)'"*(1 — M3)'?)
(M2 = my) (M2 — ma) (MZ — my,)

F My, e) = ) (64)

where m;,, with (j = 1, 2, 3), are the non-trivial zeroes of the function K, whose expressions are given in
Appendix A. Next, the following definitions are introduced

41— M) (2 - M3)’
Hj’:] (M —my;) Hj':] (M3 — mj;)
and the functions (4, B) are subsequently written as sums of partial fractions through the use of the forms
provided in Egs. (A.5) and (A.6) of Appendix A. In view of the above, Ff,P ) (M7, ¢) in (64) takes the fol-

lowing form, which can directly lead to the determination of the constant 2 through canceling of the terms
that generate the unacceptable Rayleigh-wave singularities

A(Mr,e) = (65a,b)

5 B(MTag) =

Fl(ip) (MT sin ®,&

1 3 4,(1 — M2sin® 9)'? 1 S~ B;(1 — M2, sin 1/2
- Z : o) "1 Z . Ik (66)
o = (M3 sin? ¢ — mj;) T (M7 sin? ¢ — m;.)

where the new constants (4;, B;), with (j = 1, 2, 3), are given in Eqs. (A.11) and (A.12) of Appendix A and
solely depend upon the Poisson’s ratio and the coupling constant of the material. Finally, in view of (66)
and the definition of ¢y,, (63) becomes

3 2 1/2 3 2 wia2 1/2 1/2
- Mz Bi(1 — M, 20m,. "M
u® (r, ¢,z =0) = Z sin 90) n Z i ( L.8in” o) n m, Mt COS @

ZHW — M2 sin” ¢ — m,) (M3sin® @ —m;)  Misin® @ —my,

J=1

(67)
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From the above form, it is clear now that Q should be chosen so that the terms corresponding to j = 1 to be
canceled along the Rayleigh wave singularities ahead of the load, that is for ¢ = £¢;,.. In this way, by
solving the equation

Ay (1 — M2sin® @p)"* + B (1 — m™2M?2 sin® @p,)'* + 2Qm|* My cos ¢y, = 0, (68)
we obtain the appropriate value of Q as

M =2 P2 — m) 40— m) 0 = )

“- 2P (M — ) Py — ) s — ) ©
Further, from (67) the final solution in the range V3 < ¥V < V¢ is obtained as
u?(r, @,z =0) = — il TfFl(f)) (Mrsin @, ¢)
z 2umr
- My cos p(1 — m;2m18)1/2[(2 _ mle)2 1-~-24(1 — mls)l/z(l — m;zmn)l/z] (70)

(M3 sin® ¢ — my,) (M2 — my,)'" (my, — mag) (my, — m3)

e Transonic range (Vr < V < I1,):
In this case, both terms in the RHS of (61) contribute. Also, the functions Fl(m(MT sin @, &) and
" (M sin @, £) because of (24), (25), (64), (65a,b) and (A.1) are written as

TcF](P) (M sin @, &) = A(Mrysin ¢, &)(1 — Mx sin’ (p)l/zH(VT — V|sin ¢|)
+ B(Mysin @, e)(1 — M?, sin ¢)'/?, (71a)

O (Mr(1 =02, 8) = A(Mr(1 = )2 ) (M7 = MRE = 1) PH(V (1= 8)'2 = 1), (71b)
Substituting then (71) in (61) provides

P . . . .
uﬁp)(l”, p,z=0) = —% [A(M7sin @, &) (1 — M% sin’ (p)l/zH(VT — V|sing|) + B(Mrsin @, &)
. p -1/
(1= s ) =20 [ AM(1 = 8)' P o) (3 = M3 = 1)

1

An analysis now of the integral in the RHS of (72) is provided and this shows that the integral is a well-
defined Cauchy principal-value integral. In view of (65a), the following points are noted about the integral:
(i) The analysis in Appendix A shows that the zero of the term M3 — m, — M%C2 lies outside the integra-
tion interval. (ii) The terms M3 —m;, — M%Cz, with (j = 2, 3), do not have zeroes in this velocity regime
because it is valid that ms, > ma, > M3, as shown in Appendix A. (iii) Along those angles ¢ defined by
cos? ¢ = 0, the integral diverges but because of the concurrent vanishing of the coefficient cos ¢ the integral
term in (72) eventually vanishes. (iv) Along those angles ¢ defined by cos® ¢ = [1 — (1/M3)] (these angles
correspond to the shear Mach wavefronts), the integrand exhibits an integrable behavior and varies as

281172 ~1/2
(1= (/M) =0

The above analysis reveals therefore that the integrand in (72) exhibits only one pole at { = | cos ¢|, and
the associated integral is a Cauchy principal-value integral contributing no singularity in the displacement.
The only singularity in (72) stems from the first term of this expression and is associated with thermoelastic
Rayleigh wavefronts. As in the previous super-Rayleigh/subsonic case, these wavefronts extend both ahead
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of the load and behind the load. We can work therefore as before to eliminate the singularity ahead of the
moving load. The first term in (72) also indicates the existence of trailing shear Mach wavefronts since it
contains the Heaviside step function H(Vr — V|sin ¢|). In view of the above, the final expression for the
surface normal displacement u*) due to a normal load P moving in the transonic range is found to be

P

ul)(r,p,z=0) = S [A(MT sin ¢, &) (1 — M2sin® @) >H(Vy — V|sin ¢|) + B(My sin @, £)

x (1= M2 sin® )2 — Mrcos (1 —mmy) *[(2 —my.)* +4(1 —my,)'*(1 - maz)mls)l/z]}

(M'lz‘ Sinz P — mlz:)(M”]z" - mla:)l/z (mlx; - m21:)(m11: — m3;

_ Pcosg /[1(1/M%)]1/2A(M (=) (0 M2 1)1/2PF( 1 > d
e Jo ! ’ T B cos2p — (2 '

(73)

The Cauchy principal-value integral in (73) and all other integrals obtained below as analytical solutions
were evaluated by using the numerical algorithms of the program MATHEMATICA™. In all cases ana-
Iytical considerations are provided to show that these integrals are amenable to a direct numerical treat-
ment. Numerical results are given in Section 9.

e Supersonic range (V.. < V):
Substituting (24) and (25) in the basic result (61) and taking into account (65) and (A.1), the following
expression is obtained

P . . . .
uﬁ”(ﬂ@,z: 0)= fm[A(MTsmq),s)(l fM% sin’ qo)l/zH(VT — V|sin¢|) + B(Mrsin ¢, ¢)

.2 1/2 . PCOS(/) [17(1/M51:>]1/2 231/2
< (1= M sin ) PH( ~ Vising] - [ A1 =)',

x (M2 — M2 — 1) 4 B(Mr(1 - ) e) (M2, — MEC — 1>‘/21PF(%) d¢
cos?p —(

Pcos ¢ /[I(I/M%)]'/z
i

1
e AMr(1= )2 o) (M7 — MRE — 1)‘/21>F<7> dt.

(M) cos2p—

(74)

In the RHS of (74), the first term with the two Heaviside step functions clearly exhibits the appearance of
the longitudinal and shear Mach wavefronts. However, the second and third terms (integral terms) require
a more careful analysis.

For the first integral the following points are noticed. (i) Relation (34) and the analysis in Appendix A
indicate that m;, < m? and, therefore, the term M3 — m,, — M%C2 has no zeros inside the integration interval.
(ii) The analysis in Appendix A indicates that the zeros my, and m;, of the function K, (Mr, ¢) are real numbers
when the material constant v, defined in (35) satisfies the inequalities 0 < v, < vy = 0.2630820648 . .. In ad-
dition, in the supersonic regime, the inequalities m», < M3 and/or ms, < M3} may be satisfied and, accord-
ingly, the zeroes of the terms M3 — m;, —M%Cz, with (j =2, 3), may lie within the integration interval.
Nevertheless, it can be shown that these points correspond to removable singularities. (iii) Along the lines
defined by cos® ¢ = [1 — (1/M},)], which correspond to the longitudinal Mach wavefronts, the integrand
remains integrable since it behaves as ([1 — (1/M2,)]"* — ¢)~"/* at the upper integration limit.

For the second integral now, the following points are of notice. (i) The zeroes of the term M3 — mj,—
M3 lie outside the integration interval, since my, < 1. (i) The zeros of the terms M2 — m;, — M3{*, with
(j =2, 3), lie outside the integration interval. (iii) Along the shear Mach wavefront (upper integration
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limit), the integrand behaves like an inverse square root and is, therefore, integrable. Along the longitudinal
Mach wavefront, the integrand is smooth.

Finally, we observe that in the two integrands of (74) only one pole appears at the point { = |cos ¢|.
Therefore, the integrals can be evaluated in the Cauchy principal-value sense without any particular diffi-
culty. In view of the above observations, it is concluded that there are no other singularities for the surface
normal displacement u")(r, ¢,z = 0) except for the Rayleigh-type singularity exhibited by the first (non-
integral) term of (74). This singularity is due to the functions 4 (Mt sin ¢, ¢) and B(Mr sin ¢, ¢). Following
the same procedure as in the cases of super-Rayleigh/subsonic and transonic ranges treated before, the final
form of the solution in the supersonic range is found to be

P

gy A(Mysin @, &)(1 — M2 sin’ @) PH(V; — V|sin ¢|) + B(My sin ¢, ¢)
U

ul(r,p,z=0) =

x (1 — M2 sin® @) *H(V, — V]|sin ¢|)

_ Mrcoso(l — m22my,) ' 22 = my,)? +4(1 —my)'* (1 - mgzmlc)l/z]l

(M% Sin2 O — mla)(M"lz‘ - mle)l/z(mls - mZe)(mls - m3a)

Pcos ¢ /[1(1/ME(;>]1/2 B(Mx(1 — )2, 6) (M2, — M22° I)I/ZPF< 1 i
a LA )€ Le — MLe> T — 2
wer o cos?p —(
1/2
Pcos ¢ /““/Mfg)] . ; i ” :
_ AMr(1 =) o) (M7 — M3 — 1) "PF| —— | &
wer o cos?p —(
P [1=(1/M2)])' :
- Cozs(p/ A= ) ) (ME - MEC - 1)'/2PF<2)C1C.
BT - ) cos? g —{

(75)

With the above expression, the presentation of results for the surface normal displacement " is concluded.
In the limit as ¢ — 0, i.e. as thermal effects are eliminated, these results take the form of the results for the
‘pure mechanical’ problem of a normal load moving over the surface of an elastic half space (Georgiadis
and Lykotrafitis, 2001). Notice also that the results of Georgiadis and Lykotrafitis (2001) agree with the
ones of Lansing (1966) and Barber (1996) in the entire speed range, and with the sub-Rayleigh results of
Eason (1965), who restricted himself in a sub-Rayleigh analysis of the problem only.

6.2. Vertical displacement u'S due to the tangential load S

We operate again with the inverse Radon transform on (22) and proceed as in the previous case of the
normal load obtaining the following basic result

S S cos
s N o (S) . . Q
uS(r,p,z=0) = _—Z,urF] (M sin ¢, ¢)| sin | — pree
! 1
x / FS (Mr(1 =) e)(1 - CZWZPF(—z 2) dc. (76)
0 cos* ¢ — ¢

From this expression, particular results will be obtained below for the entire speed regime, i.e. for
0<V < Vagy, Vae <V < Vp, V1 <V <V, and V., < V. These results will depend of course upon the par-
ticular forms of the functions FI(S>( ) and FZ(S)( ) in each speed range. One may observe finally that Eq. (76)
clearly exhibits the required symmetry of u) w.r.t. the x-axis.



G. Lykotrafitis, H.G. Georgiadis | International Journal of Solids and Structures 40 (2003) 899-940 919

e Sub-Rayleigh range (0 < V < Vg,):
In this range, only the integral in (76) contributes, because Fl(ls ) (Mrsin @) = 0 for all angles ¢, giving the
result

1
00,2 =0) = =220 [ C(ur(1 = £)1,5) 4 DOl = )2 0)(1 M3 030
0
x (1—M2, + M) (1 - Cz)l/zPF<%> de, (77)
cos2p —(
where

(8m;? —4) + (6 — 8m,; *)M3 — My 2(2 — M3) '
[T, 02— my) T 0% —my)

If we set ¢ = 0 in (77), the respective results of Eason (1965) and Georgiadis and Lykotrafitis (2001) are
recovered.

C(Mr,e) = . D(Mre) = (78a,b)

e Super-Rayleigh subsonic range (V. < V < Vrp):

In this case, examining (76) reveals that there are two poles at the points { = [l — (m;,/M3})]"’~ and
{ = | cos ¢|. No additional poles arise since the terms M3 — mj; — M%CZ, with (j = 2, 3), exhibit no zeros (see
Appendix A). One therefore may obtain

1/2

Scos !
u (r, 0,z =0) = — ,mzr@ / [C*(Mr(1 =)' ,e) + D (Mr(1 = )2 ) (1 — M2+ M2)'?
0
1 1
x (1= M2 +M2)'?(1 = )*PF PF<7>d ,
( Le LhC ) ]( C ) M_l% _ mls —M%CZ COSZ (p _ C2 C
(79)
where
C*(Mr, &) = C(Mr, &)(M§ — my,), D*(Mr, &) = D(Mr, &) (M3 — my,). (80a, b)

For those angles that the two poles in the integrand of (79) do not coincide, no difficulty arises for the
numerical evaluation of the integral. The two poles coincide when cos? ¢ = [1 — (m,/M3)], which are di-
rections corresponding to the Rayleigh Mach wavefronts. A double pole then arises and the solution takes
the form

1
(02 =0) = =228 [ (e W1 = )'26) + D (013 (1 = ) 0)(1 = 0+ M)
HerJo
1— a2 2 2\1/2 l_21/2LF 1 .
x (1 —Mp, + M) &) Mz (([1 ~ (my/M2)] — 52>2> dg, (81)

where PF( ) denotes now the finite-part (or second-order principal-part) pseudo-function or distribution
(see e.g. Roos, 1969; Kanwal, 1998). In other words, the integral in (81) should be interpreted as a Had-
amard finite-part integral in the sense that

(PF(1/x%), $) = lim M dx.
7—0 >t X
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Equivalently, the second-order principal-part pseudo-function is the negative of the derivative of the
principal-value pseudo-function, i.e. PF(1/x*) = —PF'(1/x). In view of the above, the displacement u'%)
given by (81) remains bounded even along the Rayleigh wavefronts.

e Transonic range (Vr < V < I1,):
One may work as in the latter case and combine now Eqgs. (26), (27), (76), (78) and (80). The result is

S| sin ¢ . . . . 1
uS(r p,z=0) = 2y D(My sin ¢, ¢)(1 — M?, sin® @) (M2 sin> o — 1)'?H | sin ¢ v
Scoso /1 2\1/2 2\1/2 1
- C(My(1 — (1 =) PR ———
] A R R T
1 1
X PF<2>dC+/ D (Mr(1 =)' ) (1 — M2 + M2
cos?2p —( [1-(1/M2))'7
1 1
x (1 —M: + MY -3) PR —————— PF<7>d .
( Lo+ MLE) (=) M3 —my, — M3 cos?p — :

(82)

The first integrand in (82) exhibits poles at the points { = ll — (my, /M%)}l/ *and { = |cos ¢|. The second
integrand exhibits always a pole at {=[1 — (my,/M3)] 2, and a pole at {=|cos¢g| only when
cos’ ¢ >[I — (1/M3)]. Both integrals are evaluated as Cauchy principal-value integrals.

e Supersonic range (J1, < V):
Here, Egs. (26), (27), (76), (78) and (80) provide

_S|sin(p|D
- 2umr

X [H(|singo|MLT> H<|singo| —MIL )}

Scos o : 201/2 20172 1
~ /OC(MT(I—C) &)1 =0) PF<7cos2<p—§2>dC

u® (r,0,z2=0 My sin @, &) (1 — M2, sin® @)* (M2 sin> ¢ — 1)"/2
z , @, T ®, Le ® T @

[1—(1/m2 )7
- / D(Mr(1 =)' &) (M2 — M2 — 1) (M2, — M2 —1)'?
0

1

_en1/2 1 _ 12
< (1-2) PF(COSZ(P_CZ>dC+/“ DMr(1 - )'7,¢)

(/)2

x (1= MF+ M) P (1= ME, + M) (1 - 8)“PF<%) dc] . (83)
COS= ¢ —

As for the numerical evaluation of (83), one encounters no difficulties except in the case that the material
constant v, is in the range 0 < v, <vy. This is because the zeros of the function K,(Mr,¢) are real and,
therefore, the integrands in the integration intervals [0, 1] and [0, (1 — 1/M2,)"/*] may exhibit more than two
distinct poles. Since this case poses a difficulty in the numerical treatment, we should write the terms
C(Mr(1 — )", &) and D(Mr(1 — (%) &) as partial fractions according to Eqs. (A.7), (A.8), (A.13) and
(A.14) of Appendix A. In this way, the first two integrals in (83), say /; and I, are written in the following
forms that are convenient for numerical treatment



G. Lykotrafitis, H.G. Georgiadis | International Journal of Solids and Structures 40 (2003) 899-940 921

= 3 1 ! 1 201/2
=3 [ e i (g e 0 <84>

—(1/M2 )

3 1 1
L= D-/ PF(——
; " Jo (M%mﬁM%gZ

1

where the constants (C;, D)) are given in Eqs. (A.13) and (A.14) of Appendix A. These constants are ex-
pressed in terms of the non-trivial zeroes (mj,, m,,, m3;) of the function K, and depend solely upon the
Poisson’s ratio and the coupling constant of the material.

)<M% MR - 1) PME — M — 1)1 — )

6.3. Normal displacement u'9) due to the heat source KQ

Working as in the previous cases and operating with (10) on (23), one may get the following result, which
holds for the entire velocity range

ul®(r, ¢,z =0) = _ﬁF (M7 sin @, ¢)sgn(sin )
Qxhcos ¢ /1 ) 2\1/2 < 1 )
-~ 2RO Qv (1 - Le)PF( ———— ) dC. 86
i ) EO 0= PR ( ) ac (86)

As usual, from this general expression specific results in forms that allow direct numerical evaluation will be
obtained in each particular range. One may observe that the form in (86) bears resemblance with the res-
pective form giving u'5), so no details for the present case are given below and only the final expressions are
recorded.

o Sub-Rayleigh range (0 < V < W%,):

In this case, only the integral term in (86) contributes to u? since Fl(Q) (Mrsin @, &) = 0. Then, we
multiply both the numerator and denominator of the integrand by the function (2—M%—|—M%C2)2+
401 — M2 + M2)'P(1 = M2, + M2C)'? and use Eq. (A.1) of Appendix A obtaining the result

hcos ! 1
© ZOZ_M/EM1_21/28M81_21/2PF<7)(1
uz (ra¢7z ) (1+8)1/2 5 0 ( T( C) B} ) L( C) COSZ(p—CZ C
1jShgcosqo / NMr(1 = )2, 8)(1 = M2+ M) (1 = M2, + M2
My (1 cz)”zPF<%) a (87)
cos?p — ¢
where

_oag2\3 a2

E0re) = —27M) gy = JCMD (85, b)

3 3
szo (M3 — my,) H_/':O (M3 — m;,)

with my, = 0.
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e Super-Rayleigh/subsonic range (7, < V < Vr):

h cos ! !
© ZOZ_M/E*M1—2”28Mz1—21/2PF
ul (r, @,z ) (1+a)l/2 | (M ( )7 e)M( ) M%—mlg—M%Cz
(o z>dc—- Qkh03§¢ [0 00 0 415
cost¢p —(

(89)
where
E*(Mr,¢) = E(Mr, &) (M7 —my,),  N*(Mr,e) = N(Mr,e) (M7 — my,). (90a, b)
e Transonic range (Vr < V < I,):
ul(r, 0,z =0) = mz\/(MT sin @, &)My,(1 — M2, sin® )" (M2 sin® ¢ — 1)/

2(1 + &) nr
1
xH(|sin(p| _L> _ch’j‘/’/ EX(Mr(1 — &) )M (1 — )
(1+¢)" 0

My
1 1 h
x PF . PF( 2>dC—LCIO/§(p
ME:—my, — M3 cos2p —( (1+¢) " n2r

1
X / - N*(MT(l _ C2)1/2;8>(1 _M% +M%C2)1/2(1 _MI2A( +ME#C2)1/2
[1=(1/M3)]

>NV 1 ( ! _)
x My, (1= 0) PF(M%m“M%Cz)PF e RS (91)

e Supersonic range (J, < V):

Oxhsin ¢
2(1 + &) *nr

. 1 . 1 Oxkhcos ¢ b 2\1/2
X |:H<Sln(0 _A7T> —H<|Slnq) _ML$>:| —m/(; E (MT(I _C) 78)

1 1 Qrxhcos ¢
x M (1= 0)PPF| — PF<7>dC+7
ul : M3 — my, — M3 cos2 ¢ — (* (1 +¢)  n2r

ul(r, 0,z =0) = N (My sin @, &)My,(1 — M?, sin® (p)l/Z(M% sin’ ¢ — 1)'/?

2 \1/2
Le

[1=(1/M¢,)]
x/ N(Mr(1 = )2 ey (M} — MPC — 1) P (MR, — M2 — 1)
0

1 ih cos !
X Mp(1 —CZ)I/ZPF(ﬁ>d —Qil/z(p/ N*(Mr(1 —Cz)l/zas)
cos?p —( (1 +¢) " m2r Ju—q/m2)"?

X (1= Mz + M) (1= M7, + M) M (1= )

1 1
g PF<M% —my, — M2 > PF<c052 o — (2> di. (92)

Nevertheless, in the case of poles at the points { = [1 — (m;, /M%)]l/ * with (j = 2, 3), the first and the second
integral, say I3 and I, are written in the following forms that facilitate their numerical evaluation
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3 1
1 1

L= E | PF[ ——  |PF| ———— M, (1 - »)"*d¢, 93
=5 | (i (g -9 ©3)

3 [1-/mp )2 1 , b 12,00 ) 1 2
I, = N; PF| ——M | (M;: —Mz{" -1 My, — M; " —1) "M (1 —
4 ,; ’/o (M%m,gM%f)( T M DM~ ME - DM - 8

1
«PF[ ——d, 94
(COSZQD—CZ) ‘ (94)

where the constants E; and N;, with (j =0, 1, 2, 3, 4), are defined in (A.15) and (A.16) of Appendix A.
Again, these constants are expressed in terms of the non-trivial zeroes (m,, m,;, m3;) of the function K.

7. Additional results: tangential displacements

In general, the tangential displacements (u.,u,) can be found by operating with the inverse Radon
transform in (10) on the transformed displacements (i, #,). The latter expressions result, of course, from
(53) and the expressions for (i, #,). Then, the components (u,, u,) in the cylindrical polar coordinate system
may readily be obtained through the coordinate transformation (54). As before, the displacements will be
obtained separately for the cases of vertical and tangential loading.

7.1. Tangential displacements due to the vertical load P

In this case, the solution to the first auxiliary problem is given by (37) and (40), whereas the solution to
the second auxiliary problem is #(g,w,z = 0) = 0 since the boundary condition associated with (14) is
6.5(q,w,z=0) = 0. Accordingly, the following Radon transformed solutions are obtained

Psgn(cos w) cosm

7P
u o

X

G'D) (M7 cos w, ¢)sgn(sqn(cos m)gq), (95)

(q,0,2=0) =

_ Psgn(cosw)sinw
2u

and further from (10), (55) and (59) and by the change of variable { = sin w, the tangential (horizontal)
displacements are obtained as

G\P) (M7 cos w, £)sgn(sqn(cos m)q) (96)

(q,0,2=0) =

i

Pcosg (! 1 1
(P) =0)=— (P) _ ) _ 2 v
0.z =0) ==Ll [ G001 =2 a1 = ) PR ©7)
Psing (! S 1
(P) _0) e (P) _e2\1)2
0.2 =0) =S58 [ 600010 ’8)(1cz>“2PF<coszw—c2>dC’ %)
where
GO (Mr(1 =)' e) = —C(Mr(1 — )%, &) — D(Mr(1 = )2 &)
x (1= M2+ MP)'P(1 = M2, + M2)'2 (99)

One may observe now that the expression for u) coincides with that for u!¥), the latter being given by
(77). This is not surprising in view of the dynamic version of the Betti-Rayleigh reciprocal theorem. Notice
also that an opposite sign in the two expressions is due to the different direction of the loads w.r.t. the
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corresponding displacements. In view of this observation, the analysis concerning «*) in the subsonic range
is carried over the case of u") as well. An inspection also on (97) and (98) reveals that both 4" and u") do
not exhibit thermoelastic Mach-type Rayleigh wavefronts. Eqs. (97) and (98) apply for both the sub-
Rayleigh and super-Rayleigh/subsonic cases.

Finally, from (54), (97) and (98), the displacement components in a system of cylindrical polar coordi-
nates (7, ¢,z) (see Fig. 6) are found to be

p 1
(P) —0) = — (P) _ 2
ur (}’" QD7Z O) ,uthr /0 G (MT(l C ) 78) (1 _ Cz)l/z dé’? (100)
®) (. ,z = 0) _ Peosgsing /1 G (Mr(1 — )2 ¢) ' prp ! ¢ (101)
u, \r,p,z="9)= wer o T ) (1— Cz)l/z cos?p — :

Eq. (100), in particular, shows that the radial displacement at the surface ) has no angular dependence.
This result at first glance looks somewhat surprising but is in agreement with the respective result of the
‘pure mechanical’ case (Lansing, 1966; Georgiadis and Lykotrafitis, 2001). Also, the other component uﬁf ) is
anti-symmetric w.r.t. both axes x and y, and vanishes along lines on the surface defined by the angles ¢ = 0,
n/2, m, 31/2.

7.2. Tangential displacements due to the tangential load S

In this case, the second auxiliary problem does enter the 3D solution. Indeed, solutions (38) and (50) for
4 and a®), respectively, provide through (53) the Radon transformed displacements

S .
i (q, 0,z =0) = — P (01 (M7 cos ) sin® @ — G (M cos w, €) cos® w] In(|q]), (102)
g .
il (q,0,2=0) = w (01 (M cos w) + G®) (Mr cos w, €)] In(|q]), (103)

where the functions of the Mach number My, G (Mr,¢) and Q;(Mr) are given in (41) and (51), respec-
tively. Then, combining the latter equations and (10), (56) and (59) leads to the tangential displacements in
the subsonic range

S . . .
ul® (r,p,2=0) = 2 [011 (M sin @) cos® ¢ — G (My sin @, &) sin” g, (104)
Scos ¢ sin @ . .
u;” (r,p,z=0) = By [011 (Mysin @) 4+ GS) (M sin ¢, £)]. (105)

In addition, applying (54) to (104) and (105) yields
_ Scoso

u®(r,p,2=0) = 2 On (My sin @), (106)
S'si .
uf? (ryp,z=0) = %G(”(MT sin ¢, ¢). (107)

Below, the sub-Rayleigh and the super-Rayleigh/subsonic cases will be treated separately.

e Sub-Rayleigh range (0 < V < FVg,):
Here, the displacements can be calculated from (104)~(107). Tt is of notice that «{*) and u*) are symmetric
and anti-symmetric, respectively, w.r.t. both axes x and y.
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e Super-Rayleigh subsonic range (V3. < V < Vr):

In this case, solutions (104) and (105) exhibit singular behavior along the Rayleigh wavefronts, where
R(M7 sin @) = 0. In this form, the solutions give rwo Rayleigh sectors; one ahead of the load S and the other
behind. Since only trailing Rayleigh waves are acceptable by the radiation condition, the sector ahead of the
load should be eliminated. Following the same reasoning as in the respective case of u*) (see Section 6.1),
we write the corrected solutions as

S [1 . . .
uS (r, 0,z =0) = o [—QII(MT sin @) cos? @ — G (M sin ¢, &) sin” ¢
wlr

(108)

@ ) }
+— - ,
rsin(ep — ¢g,)  7sin(@ + @p,)

S)

S cos ¢ sin
i (r,p,z=0) =200

1 . .
2 [; 011 (M sin @) + G (Mysin @, )

(109)

4 4
+— +— ,
rsin(@ — @g,) - rsin(e + @g,)

where the constants @ and ¥ are determined by imposing the elimination of the leading Rayleigh-wave
sectors. The final expressions read

S . . .
u®(r, ¢,z =0) = =— | Q1 (M sin @) cos® ¢ — G (M sin @, &) sin® ¢

2ur
. cos omy(1 —my) ' 212 = my,)? 4+ 4(1 — my)" (1 = m72my,)'?) (110)
M (M2 sin® @ — my,) (M2 — my,) " (my, — may)(my, — my,) |
S cos ¢ sin . .
u;.s)(r, ¢,z=0) = # lQn(MT sin @) + G (Mysin @, ¢)

O = m) (1 =) P2 = w4 40— m) (1 m 2’"”)1/2]]- (111)

T cos oMy (M3 sin’ @ —my,)(my, — my,)(my, — ms,)

Finally, operating with the transformation (54) on (110) and (111) provides the displacement components

S . 1= m) 212 — m 4 41— ) (1 — m2my,) 2
”£S>(”>€07ZZO):_[Qu(MTSIHQ’)COS(/)—( me) (2 = me)” 4 A0 = ) (1= m ) 7 ;

2ur My (MF — mls)l/z(mle — my,)(my, — ms,)
(112)
(s) o 0 _Ssin(p G(S) M .
u, (r,p,z=0)= 2ur (M7 sin @, €)
~ cos pMr(1 — m)' 22 = my)* 4+ 41— my) 2 (1 = m2my,) " (113)
n(M2sin® @ — my,) (M2 — my,)' (my, — mo)(my, — ms,) |

where it is noticed that thermoelastic Rayleigh Mach-type wavefronts do not exist for u* and also that u®)
is anti-symmetric w.r.t. the x-axis.
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7.3. Tangential displacements due to the heat source KQ

The appropriate solution to the first auxiliary problem is given by (39) and (42), whereas the second
auxiliary problem does not play a role in view of the boundary condition #(q, w,z = 0) = 0 that accom-
panies the PDE in (14) (this is expected, of course, since a thermal field does not interfere with shear waves
in coupled thermoelasticity). The Radon transformed solution is now obtained from the aforementioned
auxiliary solution through the coordinate transformation (53)

Oxkh

#9(q,0,z=0) = WG@ (Mr cos w, &) cos w In(|g]), (114)
i (q, 0,2 =0) = %GQ (Mr cos w, £) sin w In(|q|). (115)
(1+¢)

Further, by the standard inversion procedure, we obtain the following basic results for the horizontal

displacement components (1(?, u{?) in the Cartesian system and (u!?, u(?)) in the cylindrical polar system.

Both pairs of components, however, are expressed for convenience in terms of the coordinates (r, ¢)
Oxhsin @

Q) —0) = —="""" GO(M-si 116
u=(r, @,z smao,eg),

( ) 2(1 +8)1/2}" ( T ) ( )
©) o Oxhcoso ©0) .
w(r,p,z=0) =—=———2-G%¥(Mrsin g, ¢), 17
) ( ) 2(1 +8)]/2r ( T ) ( )
u(r, ¢,z =0) =0, (118)

h

U9 (r 0,2 =0 :Q—KG@M sin @, ¢). 119
o (ryo ) 21 +8)]/2F (Mrsin g, ¢) (119)

From the above expressions, particular results will be extracted for the sub-Rayleigh and the super-Ray-
leigh/subsonic velocity regimes.

e Sub-Rayleigh range (0 < V < Vj):
In this case, relations (116)—(119) need no modification. It is noticed that (9 is symmetric w.r.t. both
axes x and y, whereas u},@ is anti-symmetric.

e Super-Rayleigh/subsonic range (Vzx < V < Vr):
In this case, the solution in (116) and (117) exhibits both leading and trailing Rayleigh sectors. Of course,
the former sector should be eliminated and by the usual procedure the following result is found

h . .
u@(r, 0,z =0) = —ﬁ G (M sin ¢, £) sin ¢
N 2c0s om ' [(2 — my,) (1 — my) ' + 4(1 — my,) (1 — m2my,) ') (120)
(M3 sin® ¢ — mi) (M2 — my,) "> (my, — mo) (my, —ms) |
QOxhcos ¢ .
ui,Q)(Vy ®,z=0) = m G'9 (Mrsin @, &)

N 2sin m; (M2 — my,) ' ?[(2 = my,) (1 — my) ' + 4(1 = my,) (1 — m2my,) ')
ncosg (M2 sin® @ — my,)my,(my, — mo,)(my, — ms,) ’
(121)
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Oxh  m (2= my) (1 —my)'"? +4(1 = my) (1 — m 2my,) ')

@,z =0) = d (122)
u® (r,z ;
(1+2¢)" nr myg(my, — ma,) (my, — ma,) (M3 —my,)'"?
h
W9 p,z=0 _ O go sin ¢, ¢
o ) 2(1+¢)r (M )
| 2m M sin 9 003 [(2 — mio)*(1— mi,)"” + 4(1 —m) (1= mmy,) "] (123)
(M3 — m) 2 (MEsin @ — my)my(my, — mog) (my, — ma,)
8. Change in temperature
8.1. Change in temperature due to the normal load P
Operating with the inverse Radon transform on (44), one obtains
07 (r, ¢,z =0)
- Pe /2“ L\ (Mycos w, ¢) ( /ﬂo d[PF(g")] PF< 1 ) dq) o
d?u(l+¢) | Jo sgn(cos ) oo dg q —rcos(w — @)
2n +00
e |2t )]
+ Ly’ (Mycoswm, ¢ / PF d dw . 124
/0 {2( ' )< o dg g—reos(w—g) )1 (124)

The evaluation now of the two inner integrals in (124) is accomplished by utilizing the following distri-
butional properties involving differentiation of convolutions (Gel’fand and Shilov, 1964; Roos, 1969)

T e e 1 I B3 L e R e
[t e () o] -4 "
With the above results in hand, Eq. (124) becomes
2= 0) = bt [ e dbireoso— ol
R n27)

Next, the two integrals in (127) will be evaluated by using again distribution theory. More specifically, for
the first integral we rely upon the following results. First, let f(¢) be a real-valued function, which is twice
continuously differentiable and varies monotonically from f(a) to f(b) as t increases from a to b, and also
f(c) =0 with a < ¢ < b. Then, it is valid that (Hoskins, 1979)

ol 1 {dé(m) /(@) 50_6)}

0 refl & e

if f(¢) increases in the considered interval, whereas



928 G. Lykotrafitis, H.G. Georgiadis | International Journal of Solids and Structures 40 (2003) 899-940

i _L_{o-0 1y, )

i@ P Lde T ()

if f'(¢) decreases in the same interval. Secondly, use is made of the definition of the derivative of the Dirac
delta distribution, i.e.

/ FOFd = —/0).

These two properties along with the observation that L< (M7 sin @, ¢) cos d(sin @) = 0 (this is because
*)(0,¢) = 0), lead to the result

2 { dlLl (M cos(w + @), ¢)] }
w=n/2

r2sgn(— sin ¢) do

for the first integral. As for the second integral, we first apply the change of variable { = cos w and then
make use of the distributional property d{PF(¢~')}/dg = —PF(g2). In view of the above, Eq. (127) be-
comes

*) o Pe 2 d[L\P (M cos(w + @), £)]
070 0,2 =0) = 2m2uic(1 + €)r? | sgn(—sin ¢) do s
1 y(P) 1 (P
Ly [Mrf (), €] ( ! ) / Ly [Mrg(0), ¢] ( ! )
— <~ 7 PF( = |d ———>""PF| = |d 128
+/0 TR 2 C+ o (1-0)" 2 Co (128)

where () = {cos g + (1 — %)*sing and g(¢) = {cosp — (1 — )/ sin .
8.2. Change in temperature due to the tangential load S

Operating with the inverse Radon transform on (45) and proceeding along the same lines as in the
previous case, we obtain the final result

Se
2n2pic(1 + &)r?

x { . [d[L%‘”(MT cos( + ¢).¢)]

G(S)(r7 p,z=0)=—

dw

sin @ + Lg /(M sin ¢, &) cos (p]
w=n/2

[ B () [ e (|

(129)

9. Numerical results

The numerical results are presented in the forrn of graphs showing the norrnalized dimensionless dis-
placements ur P ur /P, U = u Sur/S, U© @1+ s)l/zr/chh U ,ur/P US =uSur/S,
U9 =u9(1+ a)l/Zr/KQh U = ull ur/P, US) = u(p ,ur/S and U0 = (l + a)l/ r/kQh as functions of
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the polar angle ¢ or the shear Mach number My, for a material with Poisson’s ratio v = 0.3 and ther-
moelastic coupling constant ¢ = 0.011. All integrals appearing in the results of Sections 6-8 were evaluated
numerically.

Fig. 8 shows U\") vs. ¢ curves for various load speeds. In the sub-Rayleigh range (case of My = 0.8) the
displacement is positive and, therefore, is directed into the half space. In the subsonic/super-Rayleigh range
(case of Mt =0.95), there is a Cauchy-type discontinuity along the Rayleigh Mach wavefronts at
¢ = 106.47° and the displacement is positive in the sector defined by the Rayleigh lines (behind the load)
but negative elsewhere. In the transonic range (case of Mt = 1.2), there is a Cauchy-type discontinuity
along the Rayleigh wavefronts at ¢ = 130.61° and a slope discontinuity along the shear wavefronts (defined
by M} sin ¢ = 1) at ¢ = 123.56°. In the supersonic range (case of My = 2.5), the displacement suffers a
Cauchy-type discontinuity along the Rayleigh wavefronts at ¢ = 158.63° and a slope discontinuity along
the shear wavefronts at ¢ = 156.42°. In the same range, the displacement becomes zero along the longi-
tudinal wavefronts at ¢ = 139.22°.

Figs. 9-12 show U vs. ¢ curves for, respectively, a sub-Rayleigh speed of the load S (Mr = 0.8), a
super-Rayleigh/subsonic speed (Mt = 0.95), a transonic speed (Mt = 1.2) and a supersonic speed
(My = 2.5). It is of notice in the super-Rayleigh/subsonic case that U!®) is continuous along the Rayleigh
lines at ¢ = 106.47° and that the magnitude of U is smaller (by a factor of 10, approximately) in the
super-Rayleigh case as compared to that in the sub-Rayleigh case. Also U®) is symmetric w.r.t. the x-axis
and is zero along lines at ¢ = n/2, 31/2. In the transonic case, U'S) experiences a slope discontinuity at the
shear Mach wavefronts and, also, it is negative inside the shear wavefront sector but positive outside this
sector. Finally, Fig. 12 shows that U, in the supersonic case, is zero everywhere except in the region of the
two sectors between the longitudinal and shear wavefront lines.

Fig. 13 shows the variation of U{") with the Mach number My in the subsonic range, where U is in-
dependent of the polar angle ¢. The radial displacement is negative (i.e. its direction is towards the point of
application of the load) and becomes infinite as the velocity approaches the Rayleigh wave velocity at

normalized vertical displacement U,

0 20 40 60 80 100 120 140 160 180

Fig. 8. Variation of the normalized vertical displacement U”) = u{")ur/P, due to a normal moving load, with the polar angle ¢ for
various load speeds (cases of Mt = 0.8, 0.95, 1.2 and 2.5, which correspond to sub-Rayleigh, super-Rayleigh/subsonic, transonic and
supersonic motion, respectively). The symbols L and T mark discontinuities associated with longitudinal and transverse (shear)
wavefronts, respectively.
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Fig. 9. Variation of the normalized vertical displacement U®) = () 1ur/S, due to a tangential moving load, with the polar angle ¢ for a
load speed Mt = 0.8.
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Fig. 10. Variation of the normalized vertical displacement U = u/®) ur/S, due to a tangential moving load, with the polar angle ¢ for a
load speed Mt = 0.95.

Ve/Vr =2 0.91. At this speed the displacement is discontinuous. When 7; < V, UfP ) is finite everywhere and
remains continuous across the Rayleigh lines. Fig. 14 shows the variation of U¥) with ¢ indicating that this
displacement component is continuous across the Rayleigh lines, the x-axis and the y-axis. U”) is anti-
symmetric w.r.t. the x and y axes. Also, one may observe that the magnitude of U is much smaller in the
super-Rayleigh speed (case of Mt = 0.95) than the one in the sub-Rayleigh speed (case of Mt = 0.8).
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Fig. 11. Variation of the normalized vertical displacement U = u{® ur/S, due to a tangential moving load, with the polar angle ¢ for a

load speed My = 1.2.
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Fig. 12. Variation of the normalized vertical displacement U = u® ur/S, due to a tangential moving load, with the polar angle ¢ for a

load speed Mt = 2.5.

Fig. 15 shows the variation of U with ¢ at load velocities My = 0.8 and 0.95. No Rayleigh singularity
appears and U!®) is continuous and bounded in all directions. Fig. 16 depicts U(®) vs. ¢ indicating that this
displacement component: (i) is continuous in the entire ¢ range, (ii) is negative in the half-plane y > 0 and
positive in the half-plane y < 0, in the case of sub-Rayleigh speeds (Mt = 0.8), and (iii) suffers a Cauchy-
type singularity at the Rayleigh wavefront, in the case of super-Rayleigh speeds (M7 = 0.95).

A qualitative comparison of the present results with the respective results for the ‘pure mechanical’
problem (Georgiadis and Lykotrafitis, 2001) shows generally that the variation of the displacements is
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Fig. 13. Variation of the normalized radial displacement U") = 4 ur/P, due to a normal moving load, with the transverse Mach
number Mr. The discontinuity occurs when the load speed reaches the thermoelastic Rayleigh-wave speed in the medium.
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Fig. 14. Variation of the normalized radial displacement U") = u§P>,ur/P, due to a normal moving load, with the polar angle ¢ for load
speeds Mt = 0.8 and 0.95.

smoother in the thermoelastic case. This can be attributed to the diffusive components in the governing
equations.

As for the thermal source, Figs. 17-20 present the variation of U9 with ¢ for the source velocities
Mt =0.8,0.95, 1.2 and 2.5. These results show the occurrence of singularities along the line of motion of
the thermal source (i.e. ahead of and behind the source). Also, as the source speed increases in the subsonic
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Fig. 15. Variation of the normalized radial displacement U® = u®ur/S, due to a tangential moving load, with the polar angle ¢ for
load speeds Mt = 0.8 and 0.95.

Normalized tangential displacement U,”
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Fig. 16. Variation of the normalized tangential displacement U(E)S) = uff),ur/S, due to a tangential moving load, with the polar angle ¢
for M7y = 0.8 and 0.95.

regime (results presented in Figs. 17 and 18) the vertical displacement decreases. An analogous result was
detected in the results given before for the case of a mechanical source. In Figs. 19 and 20 discontinuities
appear along the transverse and longitudinal wavefronts, respectively. In addition, Fig. 21 shows the
variation of U9 with the shear Mach number My in the subsonic regime. A comparison between the U9
vs. Mt behavior (Fig. 21) and the U") vs. My behavior (Fig. 13) contrasts the difference between the action
of moving thermal and point-load sources. Indeed, in the case of a thermal source, U'?) = 0 in the whole
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Fig. 17. Variation of the normalized vertical displacement U9 = u(@ (1 + €)"2r/KkOh, due to a thermal moving load, with the polar
angle ¢ for Mt =0.8.

0.10 —
@ N
2 |
-
5
£ 0.05 —
-5
<9
=
2 |
<z
=
.§ 0.00 —
2
1
]
> _
=
D
S
= 005
£
t
(=]
S |
-0.10 \ \ \ \ \ \ \ \ \

0 20 40 60 80 100 120 140 160 180
0]

Fig. 18. Variation of the normalized vertical displacement U'?) = u(@ (1 + s)l/ 2r/ KQh, due to a thermal moving load, with the polar
angle ¢ for Mt = 0.95.

sub-Rayleigh range. Finally, Fig. 22 shows the variation of the normalized tangential displacement U((pQ)
with ¢ for the source velocities Mt = 0.8 and 0.95. In the latter case, one may observe the Cauchy-type
singularity of U{? along the Rayleigh Mach wavefronts at ¢ = 106.47°.
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Fig. 19. Variation of the normalized vertical displacement U@ = u(@ (1 + s)l/ *r/KkQh, due to a thermal moving load, with the polar

angle ¢ for Mt = 1.2.
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Fig. 20. Variation of the normalized vertical displacement U@ = u©@(1 + ¢)"/*+/xOh, due to a thermal moving load, with the polar

angle ¢ for Mt = 2.5.

10. Concluding remarks

In conclusion, the 3D steady-state dynamical problem of a thermoelastic half space under the action of
thermal and mechanical moving sources is treated in this paper. This problem is relevant to model contacts
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Fig. 21. Variation of the normalized radial displacement U9 = (@) (1 + s)l/zr/KQh, due to a thermal moving load, with the transverse
Mach number My.
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Fig. 22. Variation of the normalized tangential displacement U = u(@ (1 + ¢)
angle ¢ for Mt = 0.8 and 0.95.

21 /1Oh, due to a thermal moving load, with the polar

of rapidly sliding bodies. Exact solutions are obtained by using a technique based on the Radon transform
and distribution theory. The present work completes recent 2D studies (Brock and Georgiadis, 1997, 1999)
on the subject of thermo-elastodynamic fundamental solutions of moving-load problems since it deals with
the more difficult and more interesting 3D problem. The present results can also be used as Green’s
functions for integral-equation solutions of more general 3D elastodynamic contact problems.
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Appendix A

Following a relative idea from Rahman and Barber (1995), who considered the ‘pure elastic’ Rayleigh
function, we write the thermoelastic function K,(Mr,¢) defined in Eq. (32) of the main text of the paper in
the form

K.(Mr, &) = Mi{M% — 8M7 + 8(3 — 2m_*)M7 — 16(1 — m_?)}
= M’lz"(M”lz" - mlﬂ)(Mlz" - m28)(M12‘ - m3r.)a (Al)

where (m, my;, m3,) are the non-trivial zeroes of K(Mr,¢). The following analytic expressions for these
zeroes can be obtained

_4[, 2P 2R
me=3 P ) A2
o 24+ (5v, —2) | 221 -3
my, = 3 -4 - ﬁ(VS) + 4(1 — Vg) ﬂ(\’g) 9 (A3)
I 131 — 32\ (5y. — 2/3 iq1/2
O R /48 = )/M]’ e

where v, = [v + ¢(1 — v)]/[1 + 2¢(1 — v)] is a material constant that depends upon the Poisson ratio and the
coupling constant of the material, i= (—1)"% B(v,) = [3¥2(v,) + 56V — 123+2 + 78v, — 11]'*, and
700) = [(1 =)’ (3202 — 16V + 21, — 5)]'/*

Further, an inspection on the above functions and a graphical representation of the functions m,(v,),
Re(my.(v,)), Re(ms.(v,)), (my, — m?) and (ms, — m?), where Re( ) denotes the real part of a complex function
and m, = [2(1 — v,)/(1 — 2v,)]'"/?, reveal the following points: (i) The zero my, is real for all values of v, and
coincides with the non-trivial zero of the Rayleigh function R.(Mrt,¢). (ii) The zeros m,, and m;, are also
zeros of the function (2 — M2)” +4(1 — M2,)"*(1 — M2)"*. They are real in the interval 0 < v, < vo, where
vo = 0.26308206488336365 . . ., and complex conjugate in the interval vy < v, < 0.5. We also notice that v is
the real zero of y(v.). (iii) The inequalities m;, < 1 < Re(my,) < Re(m;,) are valid. (iv) The inequalities
Mfg < M% < m? < my, < my, are valid in the subsonic and transonic speed ranges if (m,,, ms,) are real (i.e.
in the interval 0 < v, < vp). (v) The equality my.mams, = 16(1 — m_?) is always valid.

Having available, through (A.1), the factorization forms of K, and R, permits writing (64) and other
analogous equations in the main text of the paper.

Finally, the expansions of the functions (4, B, C, D, E, N) in sums of partial fractions are as follows:

Lo A=y S 4;
AN ) = [ G ) 2 OB (A3)
By = 2 i: - (A.6)

C(MT,S): i 3 __ s‘. :ZM’ (A7)
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202 — M3 3 D,
D(MTa )7 3 ( > T) = Z ) . y (A8)
[ (Mt —mp) 55 (M — mj;)
(2 - Mp)’ : E;
E(Mr,¢) = , (A.9)
00 —my) 25 06 )
402 — M2 3 -
N(MT78) = 3 ( s T) :Z 2]\]1 ) (AlO)
[Too(M}F —my) 4= (Mg —mj)
where mg, = 0 and
4(1 —m*my,) 4(1 — m>my,)
Al = - P A2 = - )
(mls - m2s)(mls - m3s) (mZ.e - mls)(m2s - m3e)
4(1 — m:2
gy = HMomPmy) (A.1la<)
(is - mlc)(m3c - m28)
5 _ (2 —my,) B (2 — my,)’ B (2 — ms,)’
: (ml.': - mZC)(mlc - m3£) ’ (m2s - mlC)(mZC - m3c) ’ (m3s - mlz)(m3s - mZC) ’
(A.12a—c)
C = (8m 2 —4) + (6 — 8m,*)my, — m3, C — (8m; 2 —4) + (6 — 8m, 2 )ma, — m3,
: (mls - m28)(m1£ - m3£) ’ ? (m28 - mlﬁ)(m2£ - m3e) ’
-2 Q-2 2
= (8m; 4) + (6 — 8m; *)ms, m387 (A.13a-c)
(m3£ - mle)(m3s - m2£)
Dl _ 2(2 — mlg) 7 D2 _ 2(2 — mzs) ,
(mlc - m2£)(m1£ - m3a) (m2£ - mls)(mZE - m3£)
2(2 —
Dy = (2 = my) , (A.14a—)
<m38 - mls)(mSe - ng)
3
Eym————  E - (2= ) ,
mymoMm3, mls(mlc - m2z)(mlc - mSa)
3 3
Ez = (2 m25) y E3 = (2 mSH) s (AlSafd)
mZe(mZS - mls)(mZS - m3s) is(mS.s - mle)(m3s - mZS)
402 -
No=-———\  N= Com)
myma M3, mlﬁ(mlﬁ - mZS)(mle - m3a)
4(2 — 402 -
Ny = (2= ma) . Ny = (2 = ms.) . (A.16a-d)
mZS(st - mlx)(mZx - m3s) m3s(m3s - mls)(m_’as - mZH)
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